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Abstract

Quark and lepton masses in technicolor theories can be enhanced if the
high energy, extended technicolor (ETC) interactions play an important role in
electroweak symmetry breaking. This happens when the ETC coupling and the
technicolor gauge coupling at high energies lie close to a certain critical line.
The enhancement has been associated with the existence of composite scalars
made mainly of technifermions, with masses small compared to the ETC scale.
The initial study of these states was carried out with the technicolor gauge
coupling neglected. In this paper we investigate the properties of such scalars
including the technicolor gauge interactions. We find that for realistic values
of the gauge coupling, the scalars will not be narrow resonances. Mass and
width estimates are made and some comments about the phenomenology of
these states are included.

The recent revival of interest in technicolor theories of electroweak symmetry

breaking has been stimulated partly by the observation that these theories should

not necessarily be viewed as scaled-up versions of QCD. Momentum components well

above the confinement scale Λtc can play a more important role than they do in QCD

– with important consequences such as the generation of very large fermion masses.

Walking technicolor [1] is one example of this phenomenon. Another possibility

is that the higher energy extended technicolor (ETC) interactions, which must be
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present to generate the masses of ordinary fermions, can play an important direct

role, along with the technicolor interactions, in the electroweak breaking, leading to

even larger fermion masses [2, 3]. This can take place only if the combination of the

ETC coupling and the technicolor coupling at the ETC scale is sufficiently close to

a certain critical curve [4].

It has recently been suggested that this ETC-driven enhancement is associ-

ated with the appearance of composite scalars that are light compared to the ETC

scale [5]. The enhanced fermion mass then arises from an effective Yukawa coupling

of the fermion to the scalar which develops a vacuum value from the technicolor

interactions. Here we summarize a study of the light composite scalars generated

by near-critical high energy interactions. We conclude that unless the technicolor

coupling at the ETC scale is unrealistically weak and the ETC coupling is very close

to the critical curve, these light states will have large widths.

We consider a single doublet of technifermions Ψ = (U,D) subject to a con-

fining technicolor force and an additional, higher energy, attractive ETC interaction.

The latter is approximated by an effective, SU(2)L × U(1) invariant, four-fermion

coupling [6]

L4f =
8π2λ

NtcΛ2
(Ψ̄i

LUR)(ŪRΨi
L) , (1)

where i is a summed SU(2)L index, Ntc is the number of technicolors, Λ is the

ETC mass scale, and λ is the interaction strength of the ETC interactions. Implicit

technicolor indices are also summed in each fermion bilinear.

Only the UR and not the DR has been included in the ETC interaction,

assuming that terms involving the latter will be weaker. Thus, while the technicolor
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interactions will generate a dynamical mass for both the U and D, the above ETC

interaction will contribute only to the U mass. This anticipates that when ETC

couplings to ordinary fermions are included, the mechanism being explored here will

be especially important for the generation of the t-quark mass.

We begin by recalling some features of dynamical chiral symmetry breaking

driven by the combination of a gauge interaction and a high energy, ETC, four-

fermion interaction. Suppose that the physics of interest takes place at energies

well above the confinement scale Λtc. It should be possible to describe this physics

in terms of λ and α(Λ) (the technicolor coupling at the ETC scale), with technicolor

running neglected to first approximation. The running of the technicolor coupling

can then be included perturbatively. We will adopt this procedure and return later

to a discussion of the conditions under which the approach is reliable.

With running neglected, dynamical mass generation can be studied in lin-

earized ladder approximation [4, 7]. In Landau gauge [8], the gap equation for the

dynamical mass Σ(p) of the U takes the following form after angular integration:

Σ(p) =
3αC2(R)

4π

∫ Λ2
dk2

M2
Σ(k) + λ

∫ Λ2
dk2

Λ2
Σ(k) + ... , (2)

where α ≡ α(Λ), C2(R) is the quadratic Casimir of the technifermion representation

R, M is the maximum of p or k, and the ellipses represent terms of order α2, αλ,

and higher.

Analysis of this equation in the α, λ plane [4] reveals that a critical curve

separates the broken phase (Σ 6= 0) from the symmetric phase (Σ = 0). For λ ≤ 1/4,

the broken phase exists only for α > αc ≡ π/3C2(R). For λ ≥ 1/4, the critical curve

3



separating the two phases is defined by

λα =
[
1
2

+
1
2
η

]2
, (3)

where η ≡
√

1− α/αc. The broken phase then exists only for λ > λα.

When the running of the technicolor gauge coupling is re-introduced, this

distinction between broken and symmetric phases is blurred. The growth of the

coupling at momenta near Λtc will in fact always break the chiral symmetry at

these lower scales. The critical curve in λ and α is therefore, loosely speaking, the

dividing line between the regime where the high energy interactions (four-fermion

and technicolor combined) are able to break the symmetry, and the regime where

they are too weak. With λ and α in the weak, ”symmetric” regime the low energy

breaking of the symmetry by the growth of the technicolor coupling near Λtc will

typically lead to Σ(0) ∼ Λtc � Λ.

It is this regime, where the spontaneous breaking is dominated by the ”low

energy” technicolor interaction, that is of principal interest in this paper. To set

the stage, however, we first suppose that α and λ lie in the ”broken” phase. The

behavior of Σ(p), as the critical curve is approached can be derived from the gap

equation. Since in a realistic theory α < αc, we summarize the critical behavior

only for this case. As λ→ λα with α fixed, one finds that [4]

Σ(0)
Λ

∼ (λ/λα − 1)
1
2η . (4)

Thus the critical behavior involves a (gauge independent) [8] anomalous dimension

that depends on the strength of the long range interaction. With technicolor running

reinstated, this behavior will persist as long as λ/λα − 1 is such that Σ(0)� Λtc.
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We now return to the regime λ < λα, where Σ(0) ∼ Λtc. There it has been

shown that for a range of λ near λα, the high energy mass of the technifermion

Σ(Λ) takes the form [3]

Σ(Λ) ∼ g2 < ψ̄ψ >λ=0

Λ2(1− λ/λα)
. (5)

Here, < ψ̄ψ >λ=0 is the technifermion condensate in a pure technicolor theory

normalized at Λ, and g2 = 4π2λ. If an ordinary fermion (quark or lepton) is

coupled to the technifermion by an ETC interaction with strength of order g2/Λ2,

then its mass is also given by Eq. 5. This expression exhibits the ETC-driven mass

enhancement as λ→ λα. It will break down once Λ(1− λ/λα)1/2 ∼ Λtc.

In Ref. [5], it was suggested that this enhancement can be attributed to the

existence of a light scalar particle of massM ∼ Λ(1−λ/λα)1/2 [10]. It couples to the

technifermion and then develops a vacuum value due to the technicolor interactions,

producing a ”tadpole” diagram and leading to the result (5). This estimate is

reliable as long as λα − λ is large enough that M � Λtc. The discussion of scalar

formation in Ref. [5] was restricted to a pure four-fermion theory [10], i.e. a Nambu-

Jona-Lasinio (NJL) model [11]. Here we include the technicolor gauge interactions

and specifically address the issue of the existence of a light physical scalar.

To get an idea of what to expect, recall that in the regime outside the critical

curve, the high energy interactions are strong enough to break the chiral symmetry

and produce three massless scalar Goldstone bosons. They will also produce a mas-

sive scalar whose mass vanishes as the critical curve is approached. Since the phase

transition in the non-running theory is second order [4], corresponding scalar reso-

nances produced by the high energy interactions are also expected on the weak side
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of the critical curve, whose masses approach zero as the critical curve is approached.

In this phase, still neglecting running, chiral symmetry ensures that the scalar res-

onances are degenerate. To explore the region of this phase near the critical curve,

auxillary fields are introduced for these light scalar degrees of freedom.

Four auxiliary fields are introduced by replacing the effective four-fermion

interaction in Eq. 1 by

Laux = − g√
Ntc

Ψ̄LM(
UR

0
) + h.c.− Λ2

4
Tr M †M, (6)

where M = σ+ i~τ ·~π. The SU(2)L×U(1) symmetry is manifest in this Lagrangian.

These fields do not, in general, have definite parity, since the original interaction

(Eq. 1) is parity violating. We will refer to all of these fields as scalars. The study

of critical behavior in terms of the auxiliary fields begins with the quadratic term

in the effective potential. The classical piece can be read off from Laux and the

quantum piece can be computed in ladder approximation by evaluating the graphs

depicted in Fig. 1 at zero external momentum [12, 8]. The sum of graphs can be

written as

V
(2)
ladder =

(σ2 + ~π2)
2

g2
∫

d4k

(2π)4
Γ(k)
k2

, (7)

where Γ(k) is the full ladder-approximation to the 1PI σUŪ vertex with zero mo-

mentum flowing along the scalar line. Γ(k) can be evaluated by solving the Dyson-

Schwinger equation which gives [8]

Γ(k) =
1

1
2 + 1

2η

(
k2

Λ2

)− 1
2
+ 1

2
η

. (8)

Substituting this expression into Eq. 7 and combining the result with the classical
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term then gives the full quadratic effective potential

V (2) =
Λ2

2

[
1− λ

(1
2 + 1

2η)
2

]
(σ2 + ~π2) . (9)

The stability of this potential at the origin is determined by the sign of the coefficient

of 1
2(σ2 + ~π2). The critical curve (Eq. 3) is determined by setting this coefficient to

zero.

In the regime λ < λα of special interest here, the quadratic effective potential

gives the zero-momentum limit of the scalar inverse propagator, that is the ”zero-

momentum mass”

M(0) = Λ(1− λ/λα)1/2 . (10)

M(0) will be small compared to Λ if nature provides us with a λ close to λα.

Recalling that the scalar σ will develop a small vacuum value, we recover the fermion

mass enhancement formula (Eq. 5) [3], together with its tadpole interpretation [5].

To explore the new physics at scales well below Λ generated by near-critical

high energy interactions, it is necessary to move beyond zero momentum. This

amounts to the construction of the effective action of the low energy theory. The

question of whether the light scalars exist as narrow or even broad resonances can

be addressed by constructing the quadratic term in the effective action of the scalar

fields. For the σ field, for example, it can be written in the Euclidean-space form

W (2)[σ] = −
∫

d4p

(2π)4
1
2
∆−1(p)σ(p)σ(−p) , (11)

where σ(p) is the momentum-space field and ∆−1(p) is the inverse scalar propagator

at momentum p.

To compute ∆−1(p), one must evaluate the graphs shown in Fig. 1 with some
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non-zero external momentum p in the scalar legs [13]. This requires knowledge of

Γ(p, k), the full ladder-approximation to the 1PI σUŪ vertex with momentum p

flowing along the scalar line. A complete computation of Γ(p, k) is difficult but an

approximation will be adequate for our purposes. We begin by considering a Taylor

series expansion about p = 0 of ∆−1(p). In the ladder approximation one can show,

by use of the Dyson-Schwinger equation for Γ(p, k), that two terms contribute to

the second derivative (with respect to pµ) of the graphs in question (See Fig 2).

One term has two derivatives on a fermion propagator and a Γ(p, k) at each scalar

vertex; the other term has one derivative on a propagator, a Γ(p, k) at one vertex,

and a derivative of Γ(p, k) at the other vertex. The derivative of Γ(p, k) is higher

order in α than Γ(p, k). By solving the Dyson-Schwinger equation for the partial

derivative of Γ(p, k) with respect to p, evaluated at p = 0, one can show that the

second term is also numerically smaller than the first (evaluated at p = 0 [14]) for

α ≤ αc.

Higher derivatives of ∆−1(p) will also contain terms with and without deriva-

tives of Γ(p, k). In what follows we will drop all terms involving derivatives of Γ(p, k),

assuming their sum is numerically smaller than the sum of terms with no derivatives

of Γ(p, k). These terms in the Taylor expansion contain only graphs with derivatives

on the fermion propagator. They can easily be summed.

This resummation gives a graph with a Γ(k) at each scalar vertex, and the

external momentum p flowing through one fermion line. Performing the trace and

the angular integrations we obtain

∆−1(p)−∆−1(0) =
g2

8π2

∫ p2

0
dk2Γ2(k)

(
k2

p2
− 2

)
− p2 g

2

8π2

∫ Λ2

p2
dk2 Γ2(k)

k2
. (12)
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Combining the result for the effective potential (Eq. 9) with the above kinetic term

(and Wick rotating so that p2 is positive for a time-like Minkowski momentum) we

find

∆−1(p) = −Λ2

(
a
p2

Λ2
+ b

(
p2

Λ2

)η

[cos(ηπ)− i sin(ηπ)] + 1− λ

λα

)
, (13)

where

a =
λ

2λα(1− η)
, (14)

b =
λ

λαη(1− η2)
. (15)

Recall that we are restricting our attention to the case λ > 1/4 (α < αc). Before

proceeding further with the question of the possible existence of narrow resonances

for realistic values of the coupling constants, we examine Eq. 13 in some simple

limiting cases.

In the NJL limit (α→ 0) we find

∆−1
NJL(p) = p2λ

2

[
ln

(
Λ2

p2

)
+ iπ

]
− Λ2(1− λ) . (16)

Poles of ∆NJL(p) occur for complex p2. We parameterize the location of the pole

nearest the physical region by a mass and a width, i.e., the pole occurs at p2 ≡

(MNJL − i
2ΓNJL)2. For λ close to 1 this yields (keeping only leading terms in

ΓNJL/MNJL) the physical mass

M2
NJL ≈

2(1− λ)

λ ln
(

λ
2(1−λ)

)Λ2 , (17)

and narrow width
ΓNJL

MNJL
≈ π

ln
(

λ
2(1−λ)

) . (18)
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Thus the familiar NJL results are recovered in this limit. To obtain Eq. 16 from

Eq. 13, an expansion in α
2αc

ln(Λ2

p2 ) and α
2αc

has been made, keeping only the zeroth

order term. Note that this means dropping a term of order λ α
2αc

relative to the 1−λ

term. To obtain Eqs. 17 and 18 we have assumed that ln
(

λ
2(1−λ)

)
� 1. Therefore

these two equations should give good approximations for the mass and width only

when
α

2αc
� 1− λ

λ
� 1

ln
(

λ
2(1−λ)

) � 1 . (19)

For the more realistic case of finite α, we examine the location of the poles

of the propagator as λ approaches λα. The poles again occur for complex p2 so we

set p2 = p2
0 exp(−iθ). For η < 1, and λ very close to λα, we can neglect p2

Λ2 relative

to
(

p2

Λ2

)η
in the real part of ∆−1(p). We then find zeros of ∆−1(p) at

p0 ≈ Λ

(
1− λ

λα

b

) 1
2η

, (20)

θ ≈
(
m− η
η

)
π +

a sin(m−η
η π)

bη

(
1− λ

λα

b

) 1−η
η

, (21)

where m is an odd integer. We expect the physical pole to correspond to m = 1,

since it is the closest pole to the physical region. Eq. 20 describes how the mass scale

of the pole position vanishes as λ is tuned toward the critical curve. It is interesting

to note that this scaling law is different from that of the zero-momentum mass of

the scalar (Eq. 10). It is, however, the same scaling law as exhibited by Σ(0) in

the broken phase (Eq. 4). We expect the same scaling behavior for the mass of the

scalar in the broken phase. Eqs. 20 and 21 give a reliable description of the pole

position of ∆(p) only when

a

(
1− λ

λα

b

) 1
η

� 1− λ

λα
. (22)
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It can be seen from this condition that the scaling behavior sets in more rapidly as

α is increased toward αc.

We next consider under what conditions the scalar resonance will be narrow.

With a pole located at p2 = p2
0 exp(−iθ), ∆(p) will describe a narrow resonance if

θ is small. In that case, it is reasonable to parameterize the location of the pole by

a mass and a width. That is, we set p2
0 exp(−iθ) = (Mσ − i

2Γσ)2, which yields

Mσ = p0

(
1 + cos(θ)

2

) 1
2

≈ p0 , (23)

Γσ

Mσ
=

2 sin(θ)
1 + cos(θ)

≈ θ . (24)

When is θ in fact small? We first observe that for finite α (η < 1), θ (Eq. 21) does

not approach zero as λ→ λα. Therefore, the width to mass ratio is not suppressed

(as in the NJL case, α = 0) as the critical curve is approached. For small but

nonzero α, this expression gives θ → α
2αc

π as λ → λα. Thus, as the mass scale of

the scalar state is made small by approaching the critical curve, it is not described

by a narrow Breit-Wigner resonance unless α is quite small.

Having considered these special limiting cases, we now consider more generic

values of the coupling constants. A description of the resonance structure of the

theory is provided by a plot of Im ∆(p). We do this by evaluating the general

expression for ∆(p) Eq. 13, and plotting Im ∆(p) versus p/M(0) (in Fig. 3) for

various values of λ/λα and α/αc. Each figure corresponds to a different (small)

value of M(0)/Λ = (1 − λ/λα)1/2. In each case, a resonant curve exists for the

smallest value of α/αc, peaked at a momentum smaller than M(0). The curve then

shifts down (relative to M(0)) and broadens (relative to the position of the peak)

as α/αc is increased. Both the shifting down of the peak and the broadening are
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consistent with the limiting cases discussed above.

As a specific example, consider the case in which λ is tuned to within 1% of

λα (Fig. 3b), giving M(0)/Λ ≈ 1/10. The likely value of α (≡ α(Λ)) depends on

the details of the technicolor theory. If Λ is in a range between, say, 30 TeV and

1000 TeV, and if the technicolor coupling either runs normally or walks at a rate

attainable in a realistic theory, α/αc will be somewhere between roughly 0.2 and

0.5. This is a range within which a broad Breit-Wigner curve exists, peaked roughly

around 0.3M(0). With Λ = 100 TeV, for example, the peak would be around 3 TeV,

with a full width at half maximum of roughly the same order. With less fine tuning

(Fig. 3a), the resonance is broad even in the NJL limit. With a great deal of fine

tuning (Fig. 3d), the resonance is narrow for very small α but becomes broad once

α/αc is as large as say 0.2.

The curves of Fig. 3 show clearly that the tightly bound light scalar objects

produced by near-critical high energy interactions will not in general be narrow

resonances. Even with λ tuned very close to λα, the width to mass ratio will only

be small if α is unrealistically small for a technicolor theory.

To understand the origin of these results, it is convenient to frame the dis-

cussion in terms of the wavefunction renormalization factor Z of the scalar. In

the NJL limit, Z is sensitive to high momentum components and is proportional

to ln Λ2/p2. The scalar couplings to fermions are inversely proportional to Z1/2.

Therefore, these states are weakly coupled in the limit Λ2/p2 � 1, which arises

when λ − 1 � 1. It is not surprising then that the NJL resonances can be narrow

(Eq. 18). The effect of the long range gauge interaction is to shift the sensitivity of

Z towards the infrared. Z1/2 will be large (proportional to (Λ2/p2)1/2−η/2) due to
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the contribution of small momentum components. This large denominator factor,

however, will be cancelled by a corresponding Λ dependence in Γ(k) (Eq. 8), which

also enters into the computation of the decay widths. The partial and full decay

widths depend only on momentum components at the scale of the resonance peak

and are independent of Λ. There is therefore no reason for the resonances to be

narrow.

In a more realistic theory, there will also be strong ETC interactions coupling

the t quark to the U, as well as to itself. The t is therefore expected to play a role

equal to the U in the determination of critical behavior and the enhancement of

fermion mass. Even though its coupling to the scalar channels will be strong at the

ETC scale, it will be much more weakly coupled than the U at the scale associated

with the resonances. This can be seen directly from the above discussion. The Z

factor of the scalar is large (as described above) in the region of the resonance. We

are assuming here that only one set of parameters is tuned close to critical and

that there is therefore only one set of light scalars. Since the t has no technicolor

interactions, however, there is no vertex correction to compensate this factor.

For any of our conclusions to be useful in a technicolor theory, it is important

to discuss the effect on the light physics of reinstating the running of the technicolor

coupling. We have already pointed out that the running turns what we have been

calling the ”symmetric” phase into a broken phase with the breaking taking place on

the order of the confinement scale Λtc. This produces the fermion mass enhancement

formula of Eq. 5 with its tadpole interpretation.

What effect does the running have on the resonance spectrum just discussed

and other features of the low energy physics? First of all, the technifermions and
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the techni-gauge bosons will be confined at scales on the order of 1/Λtc. If the light

scales discussed above (those appearing in the graphs of Fig. 3) are large compared

to Λtc, the confinement can be expected to have little effect on the mass and total

width. The ladder computations for the total width reported above will remain

reliable in analogy to the way QCD can be used to describe R in e+e− annihilation.

The dominant decay products of the scalar resonances will be the technicolor-singlet

technihadrons, including the longitudinally polarized W ’s and Z’s. The various

partial decay rates will depend in detail on the confinement dynamics as they do in

QCD.

If these resonances are not too far above Λtc, they may be accessible at the

the SSC or at a very high energy e+e− collider. Since their strongest couplings are

likely to be to the U-type techniquark, the dominant production mechanism will

probably involve UŪ production followed by emission of the resonant state from

one of these heavy fermions. Whether the resonances can be detected will depend

on the partial and full widths, as well as detector capabilities, backgrounds, etc.

Whether the resonances lie enough above Λtc so that our estimates neglecting

the running are reliable, depends on α/αc and the smallness of λ − λα. Suppose

first that α/αc ≡ α(Λ)/αc is small, say, ≈ 0.1. If Λ is in the range from 100 TeV

to 1000 TeV, this corresponds to a normally running theory. If λ − λα is not too

small, the resonance mass will then sit well above Λtc, where the running coupling

remains quite close to α(Λ). In this case, it can also be seen that the small α

expansion of ∆−1(p) should be reasonably convergent. The use of the zeroth-order

term (Eq. 16) should give a good first approximation. Higher order corrections

involving both ladder exchange and running coupling corrections could then be

14



computed simultaneously.

If α/αc is larger, then the anomalous dimension in Γ(k) is large and the full

form of ∆−1(p) must be retained. Still, the neglect of running can be a good first

approximation. Suppose that α/αc ≈ 0.5. With Λ in the range between 100 TeV

and 1000 TeV, this corresponds to a rather slowly running theory. With λ − λα

small but not too small, the resonance mass will be small compared to Λ but well

above Λtc. In this case, it is walking that justifies the use of a constant technicolor

coupling as a first approximation. Computations showing the the effect of running

in different cases will be reported in a future publication.

If the parameters are such that the resonance curves are centered at energies

of order Λtc, then the computation of ∆(p) described above will not be quantitatively

reliable. The zero-momentum mass M(0) may still be above Λtc and the estimate

of Eq. 10 still reliable. Confinement effects, however, could become important in

the description of the resonances which then could mix with the technicolor states.

Disentangling the experimental signals in this case may be difficult.

An important question is whether the light scalar resonances are able to

mediate flavor-changing neutral currents. If we restrict our attention to CP con-

serving interactions, then possible off-diagonal couplings of ordinary fermions to

these resonances will not produce unacceptable flavor-changing neutral currents if

the zero-momentum boson masses, M(0), are above 1.5 TeV [15]. The contribution

of the scalars to flavour-changing neutral current processes involving the t quark

may be much larger. This could be of immediate interest if the t is discovered in

the next few years.
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Finally, it is worth pointing out that the results described here will not

be qualitatively changed if the effective four-fermion interaction is replaced by a

realistic interaction such as the exchange of a heavy spin-one boson [6]. The low

energy physics doesn’t depend on the details of the high energy physics, but only on

the symmetries and whether the couplings are tuned relatively close to criticality.

To conclude, we have studied the properties of light composite scalars which

are present in technicolor theories with near-critical ETC interactions. We have

shown that these scalars (which can enhance quark and lepton masses) will not be

narrow resonances for realistic values of the technicolor gauge coupling. In addition

we have pointed out some phenomenological consequences of these resonances.
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Figure Captions

Fig. 1. The quantum corrections to the quadratic effective action. The wavy

lines are techni-gauge bosons, the solid lines are technifermions, and the dashed

lines represent the scalar field.

Fig. 2. The second derivative of ∆−1(p). The external momentum p flows

through the upper lines, and the slashes indicate a derivative with respect to pµ.

Fig. 3. Graphs of Im ∆(p) for different values of λ/λα, and different values

of α/αc. The curves in each graph are normalized so that the peak value of the

α/αc = 0.01 curve equals 1.
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